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Introduction 
 
Statistical energy analysis (SEA) is a vibratory energy-flow technique which provides prediction 
procedures that are suitable for high frequencies.  The application of SEA requires that the system be 
divided into a set of coupled subsystems. Each subsystem represents a group of modes with similar 
characteristics.  Parameters such as the coupling loss factors and modal densities represent ensemble 
average quantities. 
 
The statistical prediction gives energy averages over spatial locations and bands of frequency.  The 
bandwidths are typically one-third octave.  Velocity, acceleration, pressure, stress and other response 
parameters can be calculated from the subsystem energy. 
 
 
Input Variables 
 
Numerous input parameters are needed for SEA including: 
 

1. Modal density 

2. Dissipation loss factors (equals twice the viscous damping ratio) 

3. Coupling loss factors 

4. Driving Point impedance and mobility 

5. Characteristic impedance of air or gas 

6. Radiation efficiency 

7. Transmission loss 

8. Critical frequency 

9. Ring frequency for cylindrical shell 

10. Subsystem mass 

11. Wave speed 

12. External power inputs 
 
Some of these parameters are related to one another.  Some are needed for the primary analysis.  
Others are needed to calculate secondary response variables from the total energy.  Equations for these 
variables are given in the appendices.  But the parameters for a given design should be measured if 
possible. 
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Assumptions 
 
SEA makes certain assumptions, including: 
 

1. The subsystems in SEA are finite, linear, elastic structures or fluid cavities. 

2. For a system with two subsystems, the energy flow is proportional to the acoustic or 

vibrational energies of the two subsystems. 

3. Subsystem modes in each band must be uncoupled from one another or have equal 

energies. 

4. Subsystems have small modal damping, equal for all modes in a given frequency band. 

5. The primary response is resonant. 

6. Acoustical fields are either diffuse or turbulent boundary layer. 

7. Acoustic volumes have much higher modal density than the structures in models. 

8. A cylindrical shell behaves as a flat plate above its ring frequency.  

9. Traditional SEA has assumed steady-state incoherent broadband random excitation. 

10. Transient SEA methods have also been developed. 

11. Boundary conditions become less relevant at higher frequencies. 

12. A circular plate has the same modal density as a rectangular plate of the same surface 

area. 

 
Another important assumption depends on the modal overlap value, which describes dissipation in the 
subsystems of an SEA model. It is defined as the ratio of the damping bandwidth to the average 
separation of the natural frequencies of the modes as shown in Appendix J.  It measures the 
‘smoothness’ of the frequency response function. A high modal overlap factor implies either high 
damping or high modal density, or both.   
 
Statistical energy analysis is suitable if the modal overlap is > 1.  Otherwise, deterministic methods, such 
as the finite element or boundary element method may be performed.  Further information is given in 
Appendix J. 
 

Power Flow Equation for One System 

 

 

 
 
 
 
           
                            Figure 1. 
 

  

 in  diss M 



3 

 

The velocity-power equation is 

 

Mη < v2 >=
1

ω
Πin (2) 

where 
 

 

M Mass  <v2 > Spatial average mean velocity squared  

η Loss factor  ω Angular frequency (rad/sec)  

Πin Power input     

 
The left-hand side of equation (2) represents the dissipated power. 
 
 
Power Flow Equation for Two Subsystems 
 
A diagram for a system consisting of two subsystems is shown in Figure 2.  The arrows indicate power 
flows.  The flow between subsystems actually occurs in both directions.  There are three types of power 
terms. 
 

Πin,i Power input to subsystem i 

Πdiss,i Power dissipated by subsystem i 

Πi j Power transferred from subsystem i to j 

 
 
 
 
 
 
 
 
 
 
 
 
 
                    Figure 2. 
 
 
  

 diss,2 

(1) 

 in,1  in,2 

 12 

(2) 

 diss,1 
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The total energy Ei  in subsystem i is calculated via 
 
 

[
η1 + η12 −η21
−η12 η2 + η21

] {
E1
E2
} =

1

ω
{
  Πin, 1

Πin, 2
} (3) 

 
 
where 
 

ηi Dissipation loss factor in subsystem i 

ηij Coupling loss factor from subsystem i to j 

 Band center angular frequency (rad/sec) 

 
Note that the (2 x 2) coefficient matrix is typically nonsymmetrical.  The velocity for each system can 
then be calculated as a post-processing step. 
 

Ei  =   Mi < vi
2 >                                                                                                                        (4) 

 
where 
 

Mi Mass of subsystem i 

< vi
2 > Spatial average mean square velocity in subsystem i 

 
 
Power Flow Equation for Four Subsystems in Series 
 
A diagram for a system consisting of four subsystems is shown in Figure 3.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. 
 
 

 

 

 

 diss,2 

 in,1  in,2 

(1) 

23 

12 

 in,3 

34 

12 

 in,4 

(4) (3) 

 diss,1  diss,2 
 

 

 

 diss,2 

 diss,3  diss,4 

12 

(2) 
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The total energy Ei in subsystem i is calculated via 
 
 

[

η1 + η12 −η21 0 0
−η12 η2 + η21 + η23 −η32 0
0 −η23 η3 + η32 + η34 −η43
0 0 −η34 η4 + η43

]{

E1 
E2 
E3 
E4 

} =
1

ω

{
 

 
Πin, 1

Πin, 2

Πin, 3

Πin, 4}
 

 
 

                                           
(5) 

 
 
Reference 
 
J. Wijker, Random Vibrations in Spacecraft Structure Design, Springer, New York, 2009.   
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Appendix Index 
 
 

Appendix              Topic 

A Structural Wave Speeds, Wavelengths & Wavenumbers 

B Critical Frequency & Ring Frequency 

C Radiation Efficiency & Resistance 

D Driving Point Impedance & Mobility 

E Mass Ratios for Structures with Equipment 

F Dissipation Loss Factor 

G Coupling Loss Factor 

H Acoustic Cavity Modal Density 

I Structural Modal Density 

J Modal Overlap 

K 
Equivalent Power for Acoustic Fields, Panels & Cylinders, including Turbulent 
Boundary Layer Excitation 

L Homogeneous Panel Response to a Diffuse Sound Field, Limp or Freely Hung 

M Homogeneous Panel Response to a Point Force 

N Homogeneous Panel Excited by Point Force, Radiation into Acoustic Space 

O 
Baffled Homogeneous or Honeycomb Sandwich Panel Response to Diffuse 
Acoustic Pressure Field 

P Transmission Loss & Mass Law 

Q Noise Reduction 

R Acoustic Blankets 

S Statistical Response Concentration 

T Turbulent Boundary Layer Convection Velocity 
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Appendix A 
 

Structural Wave Speeds, Wavelengths & Wavenumbers 
 
 
Variables for Homogeneous Beams and Plates 
 

B Flexural Rigidity  h Plate thickness 

CL Longitudinal wave speed  kB Wavenumber 

CS Shear wave speed   Mass density (mass/volume) 

CB Bending phase speed  m′ Mass/length 

CG Bending group speed  m″ Mass/area 

E Elastic modulus   Poisson ratio 

G Shear modulus,  G=E / (2+2)   Frequency (rad/sec) 

I Area moment of inertia   Wavelength 

 
 
Wave Characteristics 
 

Wave Type Characteristic Group & Phase Relationship 

Compression Non-dispersive Equal 

Shear Non-dispersive Equal 

Bending Dispersive CG = 2CB 

 
 
Compression Wave Speed 
 

Beam or Rod CL = √E/ρ (A-1) 

 
 

Plate CL = √
E

ρ(1 − ν2)
 (A-2) 

 
 
Shear Wave Speed 
 
 

Beams CS = √G/ρ (A-3) 
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Bending Wave Speed 
 
 

Beam CB = (
EI

m′
)
1/4

√ω (A-4) 

Plate CB = (
B

m″
)
1/4

√ω (A-5) 

Flexural Rigidity B =
Eh3

12(1 − ν2)
 (A-6) 

 
 
Equations (A-1) through (A-6) are taken from Reference A.1.   See also Reference A.2. 
 
 
Bending Wavelengths & Wavenumbers 
 
 

Beam kB =
2π

λ
= √ω[

12ρ

Eh2
]
1/4

 (A-7) 

Plate kB =
2π

λ
= √ω[

12ρ(1 − ν2)

Eh2
]

1/4

 (A-8) 

 
Equation (A-7) & (A-8) are taken from Reference A.3, Equations (3.11) & (3.18), respectively.  
 
 
Variables for Honeycomb Sandwich Panels 
 
 

c Wave speed  ν Face sheet Poisson ratio 

cs Shear speed  Gc Core shear modulus 

cb Bending speed, overall panel  tc Core thickness 

cbf 
Bending speed, individual face 
sheet 

 
tf Individual face sheet thickness 

B Flexure rigidity, overall panel  M Overall mass density (mass/area) 

Bf 
Flexural rigidity, individual face 
sheet 

 
 Frequency (rad/sec) 
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 (
cs
2

cb
4) c

6 + c4 − cs
2c2 − cbf

4 = 0 (A-9) 

 
 

                                        cb = √ω(B/M)
1/4        (A-10) 

                                        

cs = √Gctc/M                       
    

(A-11) 

                                        

cbf = √ω(2Bf/M)
1/4         

(A-12) 

                                       

B =
Etf(tc + tf)

2(1 − ν2)
         

(A-13) 

 
 
Equations (A-9) through (A-12) are taken from References A.4 & A.5.  Equation (A-13) is from Reference 
A.6. 
 
 
Honeycomb Sandwich Panel Transition Frequencies 
 
The following summary is taken from References A.4 and A.5. 
 

Range Characteristic 

Low Frequencies Bending of the entire structure as if were a thick plate 

Mid Frequencies Transverse shear strain in the honeycomb core governs the 
behavior 

High Frequencies The structural skins act in bending as if disconnected 

 
 
The transition for global bending-to-shear motion is considered to occur at the frequency at which the 
global bending phase speed equals the core shear speed, as an idealization. 

 
The global bending-to-shear transition frequency ω1 is 
 

ω1 =
Gchc

√BM
 (A-14) 
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The transition frequency ω2 for shear-to-face sheet bending motion is considered to occur at the 
frequency at which the core shear speed equals the face sheet bending phase speed. 

 
 

Bf =
Eftf

3

12(1 − ν2)
 (A-15) 

ω2 =
Gchc

√2BfM
 (A-16) 

 
 
References 
 

A.1 Beranek & Ver, editors; Noise and Vibration Control Engineering Principles and 
Applications, Wiley, New York, 1992.  Table (9.1) 

A.2 L. Cremer and M. Heckl, Structure-Borne Sound, Springer-Verlag, New York, 1988.  
Page 101, Equation (85) 

A.3 M. Brink, The Acoustic Representation of Bending Waves, M.Sc. Thesis, Delft, 2002. 

A.4 D. Yuan, N. Roozen, O. Bergsma, A. Beukers, Sound Insulation of Composite 
Cylindrical Shells: a Comparison between a Laminated and a Sandwich Cylinder, 
Acoustics 2012, Hong Kong 

A.5 H. Kurtze BGW, New Wall Design for High Transmission Loss or High Damping, J 
Acoustical Society America, 31, 1959 739-748. 

A.6 J. Wijker, Random Vibrations in Spacecraft Structure Design, Springer, New York, 
2009.  Page 283 

 
 

  



11 

 

Appendix B  
  

Critical Frequency & Ring Frequency 
 
 
 

 
 

Figure B-1.  Single Panel Sound Propagation Model, Oblique Incidence 
 

Introduction 
 

σrad Radiation efficiency  h Panel thickness 

 Angular frequency (rad/sec)  E Elastic modulus 

f Frequency (Hz)  G Shear modulus 

fcr Critical frequency   Mass density (mass/volume) 

co Speed of sound in surrounding gas   Poisson ratio 

 
 
Homogeneous Thin Panel or Large Diameter, Thin-wall Cylinder 
 
The critical frequency is the frequency at which the speed of the free bending wave in a structure 
becomes equal to the speed of the airborne acoustic wave. 
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fcr =
co
2

2πh
√
12(1 − ν2)ρ

E
 

              

(B-1) 

 
The critical frequency formula is taken from Reference B.1.   Note that a large diameter, thin-wall 
cylinder tends to behave as a flat, thin plate above its ring frequency.  
 
 
Thick Panel 
 

N Shear rigidity  k̂ Shear factor, k̂ = √5/6 

B Plate stiffness factor  m Mass per area 

 
The thick panel equations are taken from References B.1 & B.2. 
 

      fcr
2   =

1

(2π)2
[
c4m

B
] [

1

1 − (c2m/N)
]       for     (c2m/N) < 1 

  
(B-2) 

N = k̂ G h (B-3) 

B =
Eh3

12(1 − ν2)
 (B-4) 

 
 
Honeycomb Sandwich Panel 
 

E Face sheet elastic modulus  h Core thickness 

G Core shear modulus  tf Face sheet thickness, individual 

 Poisson ratio  S Shear Stiffness 

m (Total Mass)/area  D Plate stiffness factor 

 
The honeycomb sandwich equations are taken from Reference B.1. 
 

      

fcr
2   =

1

(2π)2
[
co
4m

D
] [

1

1 − (co
2m/S)

]    for (c2m/S) < 1 

               

(B-5) 
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S = Gh(1 + (tf/h))

2 
(B-6) 

      

D =
Etf(h + tf)

2

2(1 − ν2)
 

(B-7) 

 
 
Composite Panel 
 

m (Total Mass)/area  G Shear modulus (isotropic assumed) 

S Shear stiffness  h Thickness 

 
The composite panel equations are taken from Reference B.1. 
 
 

fcr   =
c2√m/D̄

2π√
3 + α
4

 thin composite panel (B-8) 

 
 
 
 
 

         fcr   =
c2√m/D̄

2π√
3 + α
4 −

c2m
S

 thick composite panel (B-9) 

 
 

α =
D12 + 2D66

D̄
 

(B-10) 

D̄ = D11 = D22 (B-11) 

S = Gh (B-12) 

 
 
The bending stiffness coefficients are taken from the moment-rotation gradient relationship. 
 

{

Mx

My

Mxy

} = [

D11 D12 0
D21 D22 0
0 0 D66

] {

∂φx/ ∂x
∂φy/ ∂y

(∂φx/ ∂y) + (∂φy/ ∂x)

} (B-13) 
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Homogeneous Cylinder, Ring Frequency 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B-2.  Ring Finite Element Model 
 
The ring frequency is the frequency at which the longitudinal wavelength is equal to the circumference 
of the cylinder.  The cylindrical shell moves radially outward and the radially inward at the ring 
frequency if the cylinder has infinite length.   
 
The ring frequency from Reference B.3 is   
 
 

fr =
1

2πR
√E/ρ (B-14) 

 
 
                     where R is the radius 
 
 
Honeycomb Sandwich Cylinder, Ring Frequency 
 
Equation (B-14) can also be used for a honeycomb sandwich cylinder by using the properties of the 
outermost skin, per Reference B-4. 
 
 
References 
 

B.1 Beranek and Ver, Noise and Vibration Control Engineering Principles and Applications, 
Wiley, New York, 1992.  Table 4.4, Equations (9.84) & (9.216), Appendix J 

Undeformed Ring Radial Displacement,  
all points in-phase 
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B.2 Renji, Nair, Narayanan, Critical and Coincident Frequencies of Flat Panels, Journal of 
Sound and Vibration, (205) (1), 1997. 

B.3 E. Szechenyi, Modal Densities and Radiation Efficiencies of Unstiffened Cylinders using 
Statistical Methods, Journal of Sound and Vibration, 1971.  Appendix I. 

B.4 T. Irvine, Honeycomb Sandwich Ring Mode, Vibrationdata, 2018. 
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Appendix C  

 
Radiation Efficiency & Resistance 

 
 

 
 
 

 
 
        Figure C-1. 

The radiation efficiency σ rad relates the 
radiated sound power to the spatially 
averaged vibration.  The radiation depends 
on the critical frequency among other 
variables.  
 
Acoustic radiation efficiency is defined as the 
ratio of sound power radiated to the surface 
vibration power of a piston with equivalent 
surface area and the same mean square 
velocity. 
 

               σrad =
Πrad
Πpiston

 (C-1) 

 
 
The radiation efficiency is usually maximized 
and may exceed unity when the structural 
and acoustic wavelengths are approximately 
equal. 
   

 
 
 
 
Common Variables 
 

σrad Radiation efficiency  co Characteristic acoustic impedance of gas 

 Angular frequency (rad/sec)  h Panel thickness 

f Frequency (Hz)  E Elastic modulus 

f c 
Critical frequency 
(from Appendix B) 

 
 Mass density (mass/volume) 

co Speed of sound in surrounding gas   Poisson ratio 
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Panel, Homogeneous, Baffled 
 

L1, L2  Length & Width  c Speed of sound 

Ap Surface area   fc Critical frequency 

P Perimeter  f1,1 Panel fundamental frequency 

γ 
= 1 for simply supported 

= 2 for clamped edge 

 
ξc = √ f  fc⁄                                 

 
 

σrad =
4 Ap

c2
 f2 for  f < f1,1 (C-2) 

σrad = [
Pc

 fcAp
δ1 +

2c2

 fc
2Ap

δ2] γ for  2 f1,1 <  f < 0.99  fc (C-3) 

δ1 =
1

4π2
 [
(1 − ξc

2) ln (
1 + ξc
1 − ξc

) + 2ξc

(1 − ξc
2)
3/2

]  (C-4) 

δ2 =

{
 
 

 
 4

π4
 [

(1 − 2ξc
2)

ξc(1 − ξc
2)
1/2
]

0

 

for  f <  fc 2⁄  

for  f >  fc 2⁄  

(C-5) 

σrad = √
L1 fc
c

+ √
L2 fc
c

 for   0.99 fc <  f < 1.01 fc (C-6) 

σrad = 1 √1 − ( fc  f ⁄ )⁄  for  f > 1.01 fc (C-7) 

 
Equations (C-2) through (C-7) are taken from Reference C.1. 
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Panel, Homogeneous, Freely-Suspended 
 

P Perimeter  S Surface area 

 

                   

σrad =
Pco
π2 S fc

√
f

fc
 for f ≤ fb,   fb = fc +

5co
P

 

     

(C-8) 

σrad =
1

√1 − (fc/f)
 for f > fb (C-9) 

 
Equations (C-8) and (C-9) are taken loosely from Reference C.2.  The results seem to agree with 
Reference C.3. 
 
 
Relationship between Radiation Efficiency & Resistance for a Panel 
 
 

R Radiation resistance  A Panel surface area 

ηpa Coupling loss factor, panel-to-air  M Panel mass  

 
 
The following equations are taken from Reference C.3. 
 
The radiation resistance R is 
 

R = ρcoAσrad (C-10) 

 
 
The coupling loss factor ηpa is 

 

ηpa =
R

Mω
 (C-11) 
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Panel, Honeycomb Sandwich 
 
 

ka Acoustic wave number  cp Wave speed from equation (A-7) 

kp Unloaded panel wave number 

 
 
 

σrad={
0.47 (ka kp⁄ )

2.24
 ,   for ka<1.5 kp

1,    for ka ≥ 1.5 kp
 (C-12) 

 

                                  ka = ω co⁄  (C-13) 

                                  kp = ω cp⁄  (C-14) 

  

Equations (C-12) through (C-14) are taken from Reference C.4.    Note that the peak radiation efficiency 
occurs above the critical frequency. 
 

Panel, Ribbed 

 

Ap Panel surface area  L Total rib length 

p Panel radiation efficiency  R̂rad Radiation resistance per length 

 

The radiation resistance Rrad is 
 

                   Rrad = (Rrad)panel + (Rrad)ribs      (C-15) 

                   (R̂rad)ribs = ρcoλpg3
(f/fc) (C-16) 

                    λp = √co
2 fcf⁄  (C-17) 

                   (Rrad)ribs = [(R̂rad)ribs]  L (C-18) 

                   (Rrad)panel = ρcoAp σp (C-19) 

 
Equations (C-15) through (C-19) are taken from References C-5 and C-6.   The g3(f/fc) term is given in 
Reference C-5, equation (2.67). 
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Cylindrical Shell 
 

 

 
Theoretical data is compared to experimental data in the above as taken from Reference C.7.  The first peak is the 
ring frequency.  The second peak is the critical frequency.  The Radiation efficiency in the valley between peaks is 
greater than 0.1. 

 

nf 
number of acoustically fast 
modes in a band 

 
h thickness 

ntotal 
total number of modes in a 
band 

 
a radius 

m axial mode number  L length 

n 
circumferential mode 
number 

 
Kx circumferential wave number 

μ Poisson ratio  Ky axial wave number 

λx circumferential wavelength  K airborne acoustic wave number 

λy axial wavelength    

 

The following is a recommendation for cylindrical shells based on historical references which include experimental 
data. 

The radiation efficiency near the ring frequency is calculated using the method in NASA CR-111840, Acoustic 
Radiation of Truncated Conical Shells.  The heritage is Maidanik (1962) and Manning and Maidanik (1964). 
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                 σrad ≈
nf
ntotal

 
 

(C-20) 

 

 
Cylindrical shell modes must be categorized as either acoustically fast (AF) or acoustically slow (AS) in 
order to determine their ability to interact with airborne sound waves.  AF modes are those with faster 
waves speeds than the speed of sound for a given frequency.  Note that the shell modes have waves 
speeds that vary with frequency due to dispersion.   But airborne sound waves speeds are constant with 
frequency. 
 
The cylindrical shell natural frequencies referenced to wavenumbers are calculated via 
 

(
f

fring
)

2

=
h2a2

12
(Kx

2 + Ky
2)
2
+ (1 − μ2) (

Ky
4

(Kx
2 + Ky

2)
2) (C-21) 

Kx =
2π

λx
=
n

a
 (C-22) 

Ky =
2π

λ𝑦
=
mπ

L
 (C-23) 

For AF modes per Reference C.6, 

K2 > Kx
2 + Ky

2 (C-24) 

 

At frequencies well below the ring frequency, a 5 dB/octave slope is assumed per Fahy & Gardonio, Sound & 
Structural Vibration, Figure 3.49.  The heritage is Manning and Maidanik (1964), Fahy (1969) & Szechenyi (1971). 

At frequencies above the ring frequency, the method is from Bies, Hansen & Howard, Engineering Noise Control, 
5th edition, section 6.8.2 for the equivalent flat panel, as shown in equations (C-2) through (C-6) in this paper.  The 
heritage is Maidanik (1962) with corrections by Price & Crocker (1970). 
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Forced Radiation 

 
 

σtotal Total radiation efficiency 
 

Z0 
Point impedance, assumed to 
be real 

σ Modal radiation efficiency  mS Mass per surface area 

σF Force radiation  TS Reverberation time 

σm 
Effective radiation for the mass 
response of a structure drive by a 
sound field 

 

c Airborne sound speed 

Sa , Sp  

Spectral densities of the acoustic 
pressure field and the and 
response acceleration field, 
respectively 

 

  

 
 
A localized source of radiation exists from the near field generated about the point drive, in addition to 
the modal radiation per Reference C.7.   
 

σF = 13.8 Z0 (2π c2mSTS )⁄  (C-24) 

 

σtotal = σ + σF (C-26) 

 

Usually, σ is much greater than σF in the higher frequency bands where many modes are contributing to 
the vibrational field and the radiation.  However, the forced field may be dominant in the lower 
frequency bands where the modal radiation may be rather low because the radiating modes are scarce. 

 

The mass-law governs the limiting response of a structure in driven by a sound field. 

 

Sa Sp⁄ = 2 ms
2⁄  (C-27) 

 

 

The effective mass response radiation efficiency σm is taken to be the same as σF per Reference C.7.   
 
 
 
References 
 

C.1 Bies, Hansen & Howard, Engineering Noise Control: Theory and Practice, Fifth Edition, 
CRC Press, 2017.   (Section 6.8.2) 

C.2 Beranek and Ver, Noise and Vibration Control Engineering Principles and Applications, 
Wiley, New York, 1992.  Table (9.8) & Equation (9.84) 
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Appendix D 
 

Driving Point Impedance & Mobility  
 
Introduction 
 

Y Mobility   Mass density (mass/volume) 

Z Mechanical impedance   Poisson ratio 

E Elastic modulus 

 
 

Z = 1 / Y                                                                                                                 (D-1) 
 
 
Thin Plate 
 
Let h = plate thickness. 
 
 

Force at Middle Point Z = 8√Bρh (D-2) 

Force at Edge Point Z = 3.5√Bρh (D-3) 

 
B =

Eh3

12(1 − ν2)
 (D-4) 

 
Equations (D-1) through (D-4) are taken from Reference D.1. 
 
 
Unstiffened Cylindrical Shell 
 
 

f1 Fundamental frequency  R Radius 

fr 
Ring frequency  
See Equation (B-14) 

 
L Length 

f Center frequency (Hz)  h Thickness 

 Center frequency (rad/sec) 
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The fundamental frequency is 

fl =
0.375

L
√
Eh

ρR
 (D-5) 

 
The ring frequency is 

fr = [1/(2πR)]√E/ρ (D-6) 
 
 
The impedance is 
 
 

Z = 2.5Eh (
R

L
)
1/2

(
h

R
)
1.25

(
1

ω
)       for    f ≤  f1 (D-7) 

 

     Z = (4/√3)ρh2√
E

ρR
(
E

ρ
)
1/4 1

√ω
       for   f1 <  f ≤  fr (D-8) 

 

     Z = (4/√3)h2√Eρ    for   f >  fr    (D-9) 
 
 
 
Equations (D-5) through (D-9) are taken from Reference D.2. 
 
 
Beam or Rod, Longitudinal, Semi-infinite 
 
Let A = cross-section area 
 

                  Z = A√Eρ   (D-10) 
 
 
Equation (D-10) is taken from Reference D.3. 
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General Structure 
 

n Modal density (modes/Hz)   M Mass 

 
 

                  Y =
n

4M
 

  

(D-11) 

Equation (D-11) is taken from Reference D.4. 
 
 
 
References 
 

D.1 Beranek and Ver, Noise and Vibration Control Engineering Principles and 
Applications, Wiley, New York, 1992.  Table (9.3) 

D.2 K. Change & H. Kao, Simplified Techniques for Predicting Vibro-Acoustic 
Environments, Wyle Laboratories. Huntsville, Alabama, 1975.  Table 1.  Available 
from NASA Technical Reports Server. 

D.3 L. Cremer and M. Heckl, Structure-Borne Sound, Springer-Verlag, New York, 1988.  
Table IV.1, page 317. 

D.4 R. Lyon & R. DeJong, Theory and Application of Statistical Energy Analysis, Second 
Edition, Lyon Corp, Cambridge, MA, 1998.  Equation (8.5.2) 
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Appendix E 
 

Mass Ratios for Structures with Equipment 
 
 
Variables 
 

⟨ab
2(f)⟩ 

Structural loaded with 
equipment, spatial average 
mean square acceleration 

 
Mi Bare structure mass 

⟨ai
2(f)⟩ 

Unloaded structure, spatial 
average mean square 
acceleration 

 
Mb Added equipment mass 

f Center frequency (Hz) 
 

mi Bare structure [ mass/(surface area) ] 

   
mb Equipment [ mass/(footprint area) ] 

 
The acceleration terms may be either power spectra or power spectral densities, as long as they are 
consistent. 
 
Mass Ratio Method 
 

⟨ab
2(f)⟩ = ⟨ai

2(f)⟩
Mi

Mi +Mb
 (E-1) 

 
 
Mass Area Density Ratio Method 
 

⟨ab
2(f)⟩ = ⟨ai

2(f)⟩
mi

mi +mb
 (E-2)                                                                                        

                                                                   
Note that the Mass Ratio Method is more conservative than the Mass Area Density Ratio Method. 
 
 
References 
 

E.1 J. Wijker, Random Vibrations in Spacecraft Structure Design, Springer, New York, 2009.  
Equations (4.218) & (4.219) 

E.2 R. Barrett, NASA TN E-1836, Techniques for Predicting Localized Vibratory Environments 
of Rocket Vehicles, 1963.  Page 22 
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Appendix F 
 

Dissipation Loss Factor 
 
 
Introduction 
 
The dissipation loss factor is η.  The frequency is f. 
 
 
Panel 
 
Pivot frequency fp = 2500 Hz. 

 

 

η = {1.8/f0.87

0.050,   f ≤ 80 Hz

,   80 Hz < f < fp

0.002,    f ≥ fp

 

 

(F-1) 

Equation (F-1) is taken from Reference F.1. 
 
 
Sandwich Panel 
 
Pivot frequency fp= 500 Hz. 

 
Bare Sandwich Panel 
 

          η = 0.3/f0.63 (F-2) 

 
 
Built-up Sandwich Panel 
 

η = {

0.050 ,   f < fp

0.050√fp/f ,   f ≥ fp
 

(F-3) 

 

 
 
The Sandwich Panel equations are taken from Reference F.1. 
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Stowed Solar Array 
 
Pivot frequency fp= 250 Hz. 

 
 

η = {

0.050 ,   f < fp

0.050√f/fp ,   f ≥ fp
 

(F-4) 

 

 
 
 
Equation (F-4) is taken from Reference F.1. 

 
 
Cylindrical Shell 
 
 

η = {
0.002 to 0.03 ,   f < 3000 Hz

0.004 to 0.006 ,   f ≥ 3000 Hz
 

(F-5) 

 

 
 
Equation (F-5) is taken from Reference F.1, page 272. 
 
 
Acoustic Room 
 
 TR  is the reverberation Time (sec) for a 60 dB decrease relative to starting energy level. 
 
 

η =
2.2

f TR
 (F-6) 

 
 
Equation (F-5) is taken from Reference F.1. 
 
 
Reference 
 

F.1 J. Wijker, Random Vibrations in Spacecraft Structure Design, Springer, New York, 2009.  
Equations (4.117) through (4.122) and page 272. 
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Appendix G 
 

Coupling Loss Factor 
 
 
Introduction 
 
The coupling loss factor for power flow from subsystem i to j is  ηij. 

 
 
L-Beam 
 

cbi 
Bending phase speed in 
transmitting beam 

 
ω Center frequency (rad/sec) 

cli 
Longitudinal wave speed in 
transmitting beam 

 
Li Length of transmitting beam  

τij Transmission coefficient 

 
 
The following beam equations are taken from Reference G.1. 
 
Coupling loss factor for propagation from beam i to j. 
 

ηij  =  
cbiτij

ωLi
 (G-1) 

 
Bending-to-Bending 
 

τbb  =  
2β2 + 1

9β2 + 6β + 2
 (G-2) 

 
Bending-to-Longitudinal & vice versa 
 

τbl  = τbl  =  
8β2 + 5β

9β2 + 6β + 2
 (G-3) 

 
Longitudinal-to-Longitudinal 
 

τll  =  
β2

9β2 + 6β + 2
 (G-4) 

β = cbi cli⁄  (G-5) 
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L-Shaped Plates 
 

L Junction length 
 

12 
Wave transmission coefficient from plate 
1 to 2 

CB,1 
Bending phase speed in 
transmitting plate 

 
12 (0) 

Normal transmission coefficient from 
plate 1 to 2 

Ap,1 Surface area of transmitting plate  CL,j Longitudinal wave speed in plate j 

 Angular frequency  j Mass density (mass/volume) in plate j 

hj Thickness of plate j 

 
The coupling loss factor equations for power flow from transmitting plate 1 to receiving plate 2 are 
taken from Reference G.1. 
 

η12 =
2

π

CB,1L

Ap,1
τ12 (G-6) 

τ12 = τ12(0)
2.754X

1 + 3.24X
 (G-7) 

τ12(0) = 2 [√ψ +
1

√ψ
]

−2

 (G-8) 

ψ =
ρ1 CL,1

3/2 h1
5/2

ρ2 CL,2
3/2 h2

5/2
 (G-9) 

X = h1 / h2 (G-10) 

 
 
Point Bridge between Two Mechanical Structures 
 

Zi Mechanical impedance subsystem i   Center frequency (rad/sec) 

ni(ω) 
Modal density in subsystem i  
(modes / (rad/sec)) 

 
The following equation is taken from Reference G.2. 
 

ηij  =  
2

πωni(ω)
 
Re(Zi) Re(Zj)

|Zi + Zj|
2  (G-11) 
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Bolted Joints between Two Plates 
 

N Number of bolts, studs, or point impedances 

f Center frequency (Hz) 

Si Surface area of plate i 

hi Thickness plate i 

ρi Mass density of plate i   (mass/volume) 

cLi Longitudinal wave speed in plate i 

 
 
The coupling loss factor ηij for propagation from plate i to plate j, as taken from Reference G.3. 

 

ηij  =  
4N

Si√3
(
hicLi
2πf

)
(ρjhj

2cLj)(ρihi
2cLi)

(ρjhj
2cLj + ρihi

2cLi)
2 (G-12) 

 
 
 
Line Joints between Two Plates, Same Material 
 

E Elastic modulus  hi Thickness of plate i 

 Poisson ratio  Ai Area of plate i 

cgi Bending wave group velocity   Frequency (rad/sec) 

cb Bending wave phase velocity   Transmission coefficient 

m″ Mass/area  B Flexural rigidity 

Lc Junction length    

 
The coupling loss factor ηij for propagation from plate i to plate j is taken from References G.7 and G.8. 

 

ηij  =  
cgiLc

ωπAi
τij (G-13)                                                                                                                                                             

 
The group velocity is twice the phase velocity for bending waves. 
 

cgi = 2cbi = 2(
Bi
m″
)
1/4

 √ω      ,      Bi =
Ehi

3

12(1 − ν2)
    (G-14) 
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The transmission coefficient is 
 

τij  =   
2

σ−5/4 + σ5/4
,  σ =

hj

hi
 (G-15)                                                                                                                                                               

 
                                                                                                                                                                                                                            

See Appendix P for alternate transmission coefficient formulas. 
 
Panel-to-Acoustical Space 
 

R Radiation resistance  A Panel surface area 

ηpa Coupling loss factor, panel-to-air  M Panel mass  

σrad Radiation efficiency (see Appendix C) 
 

 
Center angular frequency 
(rad/sec) 

ρc Characteristic impedance of the gas 

 
 
The following panel-to-acoustic equations are taken from Reference G.1.  The radiation resistance R is 

                          R = ρcAσrad (G-16) 

 
 
The coupling loss factor ηpa is 

 

ηpa =
R

Mω
=
ρcAσrad
Mω

 (G-17) 
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CLF from External to Interior Acoustic Space via a Fairing Wall 

 

ηint, ext Coupling loss factor, interior to exterior  S Surface area 

ηplf,int Coupling loss factor, fairing to interior  V Internal air volume 

ηplf,ext Coupling loss factor, fairing to exterior  c Speed of sound 

Rm Mass Law Transmission loss (dB)  f Frequency (Hz) 

τ Transmission coefficient  S Surface area 

 Angular frequency (rad/sec)  m Mass per area of fairing 

c Characteristic impedance of the air  σrad Radiation efficiency 

 
 

Equation (G-18) is the CLF due to the non-resonant mass-law, as taken from Reference G.6, equations 

(6.62) and (6.65).  The mass law transmission loss Rm equations are given in Appendix P for three 

incidence options. 

Equation (G-19) is taken from Reference G.4, equation (4-43).  See also Reference G.5, equation (9). 

ηint, ext =
c S

8π f V
τint, ext  ,    τint, ext = 10^(Rm/10) (G-18) 

              ηplf,int =
ρc

mω
 σrad (G-19) 

                 Assume   ηplf,ext = ηplf,int (G-20) 

 
CLF Reciprocity 
 
The following reciprocity formula is taken from Reference G.1, equation (4.95).  The coupling loss factor 
for power flow from subsystem j to i is 
 
 

ηji = ηij  (
ni
nj
) (G-21) 

 
where ni is the modal density for subsystem i. 
 
The modal densities may be in units of (modes/Hz) or (modes/rad) as long as consistency is maintained. 
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Appendix H 
 

Acoustic Cavity Modal Density 
 
 
Variables 
 

n Modal density (modes/Hz)   H Height 

c Speed of sound in gas  V Volume 

f Band center frequency (Hz)  R Radius 

L Length  A Area 

W Width  P Total perimeters 

 
 
1D Pipe 

The modal density for long slender pipes where the wavelength of sound is greater than any of the 

cross-dimensions from Reference H.1 is 

n = 
2L

c
 (H-1) 

                                                                                                                                

2D Rectangle 

The modal density for 2D cavities where the wavelength of sound is at least twice the depth from 

Reference H.1 is 

n = 
2πfA

c2
+
P

c
 (H-2) 

 
3D Rectangular Prism 

The modal density from Reference H.1 is 
 

n = 
4πf2V

c3
+
πfA

2c2
+
P

8c
 (H-3) 

V = LWH                                                                                                                       
(H-4) 

 

A=2(LW+LH+WH)                                                                                                 (H-5) 

P=4(L +W+H)                                                                                                           (H-6) 
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3D Cylinder 

The equivalent rectangular room approximation from Reference H.2 is 
 

n =
4πf2V

c3
 

                                                                                                
(H-7) 

V = πR2H 
                                                                                                          (H-8) 

3D Sphere 

The equivalent rectangular room approximation from Reference H.2 is 
 

n =
4πf2V

c3
 (H-9) 

V =
4

3
πR3 (H-10) 

 
 
3D Other 

The equivalent rectangular room approximation from Reference H.2 is 
 
 

n =
4πf2V

c3
 (H-11) 

 
 
References 
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H.2 NASA-CR-102876, The Response of Cylindrical Shells to Random Acoustic Excitation over 
Broad Frequency Ranges Final Report, 1970.  Equation (24).   

This reference is available online from NASA Technical Reports Server. 
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Appendix I 
 

Structural Modal Density 
 
 
Variables 
 

n() Modal density (modes/(rad/sec))   E Elastic modulus 

n(f) Modal density (modes/Hz)    Mass density (mass/volume) 

f Center frequency (Hz)  ν Poisson ratio 

 Center frequency (rad/sec)  CL Beam longitudinal wave speed 

 
 

n(f)  =  2πn(ω)  (I-1) 

CL = √E/ρ       for a beam (I-2) 

CL = √
E

ρ(1 − ν2)
 for a plate or cylindrical shell   (I-3) 

 
Beam 

 Radius of Gyration 

L Length 

A Cross section area 

I Area moment of inertia  

 
 
The following beam equations are taken from Reference I.1. 
 

n(f)  =  
L

√2πfκCL
 (I-4) 

κ = √I/A (I-5) 
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Rectangular Plate, Bending 

A Length 

B Width 

S Surface area, S = a b 

h Thickness 

m Mass Density (mass/area) 

 
 

The following plate equations are taken from References I.2 and I.3. 

Generic BCs n(ω)  =  
S

4π
√
m

B
 (I-6) 

Simply-Supported n(ω)  = 
S

4π
√
m

B
−
1

4
(
m

B
)
1/4

(
a + b

π
)
1

√ω
 (I-7) 

Free n(ω)  =  
S

4π
√
m

B
+ 
1

2
(
m

B
)
1/4

(
a + b

π
)
1

√ω
 (I-8) 

Fully Clamped n(ω)  = 
S

4π
√
m

B
−
1

2
(
m

B
)
1/4

(
a + b

π
)
1

√ω
 (I-9) 

 B =
Eh3

12(1 − ν2)
 (I-10) 

Rectangular Plate, In-plane 

Let a and b be the length and width, respectively.  The following plate equation is taken from Reference 

I.4. 

           n(ω)  =  
abω

2πCL
 (I-11) 
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Circular Plate 

d diameter  h Thickness 

S Surface area   m Mass Density (mass/area) 

 

The circular plate bending modal density is calculated from that of a rectangular plate of equal area, per 
References I.5 & I.6.  The equations for generic boundary conditions are 
 

nrect(ω)  =  
S

4π
√
m

B
 (I-12) 

S = πd2/4 (I-13) 

ncirc(ω) =
8

π2
nrect(ω) (I-14) 

 
 
Honeycomb Sandwich Panel                                                                            

 

E Face sheet elastic modulus  tf Face sheet thickness, individual 

G Core shear modulus  S Shear Stiffness 

 Poisson ratio  D Plate stiffness factor 

A Surface Area  m (Total Mass)/area 

h Core thickness 

 

The honeycomb sandwich panel equations are taken from References I.5 & I.6.   

Rectangular 
 

nrect(f) =
πAmf

S
{1 + (m2ω4 +

4mω2S2

D
)

−1/2

(mω2 +
2S2

D
)} (I-15) 

S = Gh(1 + (tf/h))
2 (I-16) 

D =
Etf(h + tf)

2

2(1 − ν2)
 (I-17) 
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Circular 
 
The circular plate bending modal density is calculated from that of a rectangular plate of equal area. 

 

ncirc(f) =
8

π2
nrect(f) (I-18) 

 

Unstiffened Cylinder 
 

fring Ring Frequency 

L Cylinder length 

h Thickness 

D Diameter 

CL Longitudinal wave speed 

 
The following cylinder equations are taken from Reference I.7. 
 

n(f)  =  
BL 

 (πhfring)
 (I-19) 

fring  =   
CL
πd

 (I-20) 

νo =  f/fring (I-21) 

           B = 2.5√νo   for νo ≤ 0.48 (I-22) 

          B = 3.6νo   for 0.48 < νo ≤ 0.83 (I-23) 

B = 2 +
0.23

(F − 1/F)
[F cos (

1.745

F2νo
2
) −

1

F
(
1.745F2

νo
2 )] 

   
                                                                                         for     νo > 0.83 

(I-24) 

F = 1.122   for one-third  octave bands,  
      1.414   for octave bands 

(I-25) 

 
An alternate method is to calculate the modal frequencies and their respective densities using the 
method in Reference I.8.  See also Reference I.9. 
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Appendix J   
 

Modal Overlap  
 
Variables 
 

n Modal density (modes/Hz)  f Frequency (Hz) 

η Loss factor 

 
 
Modal overlap is defined as the ratio of the damping bandwidth to the average separation of the natural 
frequencies of the modes.  It measures the ‘smoothness’ of the frequency response function. A high 
modal overlap factor implies either high damping or high modal density, or both. 
 
The modal overlap Mov is 
    

Mov = nηf                                                                                                                                   (J-1) 
 

Deterministic methods, such as finite element or boundary element method, can be used for Mov < 1. 
 
Statistical energy analysis can be used for Mov > 1.  
 
 
Reference 
 

J.1 J. Wijker, Random Vibrations in Spacecraft Structure Design, Springer, New York, 
2009.  Equation (4.179) 
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Appendix K 
 

Equivalent Power for Acoustic Fields, Panels & Cylinders 
 
 
Panel & Cylinder Excitation, Diffuse Field 
 

Πp,in Power input  f Center frequency (Hz) 

ca Speed of sound in air 

 

δfp 

Average separation between 
adjacent modal frequencies (Hz).  
This is the inverse of the modal 
density (modes/Hz) 

Uc 
Convection velocity  

(Appendix T) 

 
ρp Mass density (mass/volume) 

σrad Radiation efficiency  hp Panel or cylinder wall thickness 

⟨pa
2⟩ 

Spatial average of mean square 
pressure in acoustic field 

 
Ap Panel mass per area 

Ls 
Distance between simple 
supports 

 
cp Panel phase speed 

a1, a2 Empirical constants     

 
 
The diffuse field acoustic pressure can be converted into equivalent power.  The power input for a single 
frequency band per Reference K.1 is 
 

Πp,in =
ca
2σrad ⟨pa

2⟩

4πf2δfpρphp
 (K-1) 

 
The acoustic modal density is assumed to be much greater than that of the panel or cylindrical shell. 
 
 
Panel & Cylinder Excitation, Turbulent Boundary Layer, Lyon & DeJong Method 
 
The turbulent boundary layer case from Reference K.1 gives the following power input. 
 
The power for the hydrodynamically slow case is 
 

Πp,in =
 Ap⟨pa

2⟩

π2fρphp
 (
Uc
cp
) ,  Uc > cp (K-2) 
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The power for the hydrodynamically fast case is 

Πp,in =
 Ap⟨pa

2⟩

2πfρphp
 (
Uc
cp
)

3

[
a1
6
+ a2 (

Uc
2πfLs

)
2

] ,  Uc < cp (K-3)     

 

The coefficients a1 and a2 are constants approximately equal to one for the idealized case of smooth 
flow over a rectangular, simply-supported plate, but may vary by factors of 3 or more depending on the 
details of the turbulent flow and on the plate mode shapes. 
 
 
Panel & Cylinder Excitation, Turbulent Boundary Layer, Corcos Method 
 
 

 
 
                         Figure K-1.  Turbulent Flow over a Plate 
 
 

Pinj(ω) Injected power    
 

ω Excitation frequency 

⟨Spp(ω)⟩ Pressure Power Spectrum 
 

ωc Aerodynamic Coincidence frequency 

a, b Length, width  M Mass per area 

A Surface area  D Plate Bending Stiffness 

ax , az Corcos coefficients  Uc Convection speed (Appendix T) 

Lx(ω), Lz(ω) Correlation lengths    

 
The power injected from the flow to the plate is  
 

        Pinj(ω) =
Uc
2

axazπ√MDω
2
 
A

2
Ψc (

ω

ωc
) ⟨Spp(ω)⟩ (K-4)     
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The aerodynamic coincident frequency is  
 

ωc = Uc
2√
M

D
 (K-5) 

 
 

 

The Corcos function c is  
 
 

Ψc(
ω

ωc
,
ωa

Uc
,
ωb

Uc
) =

ωa

Uc

ωb

Uc
axaz  ∫

1

√
ωc
ω
− X2

√ωc
ω
−(
Ucπ
ωa

)
2

Ucπ
(ωb)

F1 (
ωb

Uc
(−az + iX)) 

 

      ⋅  [F2 (
ωa

Uc
(−ax + i (√

ωc
ω
− X2 − 1))) + F2 (

ωa

Uc
(−ax + i (√

ωc
ω
− X2 + 1))) ]  dX 

 
(K-6) 

 
The associated functions are 
 

F1(z) = −
ℜ(z)

|z|2
+
ℜ(z ∗2 (ez − 1))

|z|4
+
ℑ(z ∗ (ez − 1))

(
ωb
Uc
) X|z|2

 (K-7)                                                                                     

F2(z) = −
ℜ(z)

|z|2
+
ℜ(z ∗2 (ez − 1))

|z|4
+
ℑ(z ∗ (ez − 1))

ωa
Uc
√
ωc
ω
− X2|z|2

 
(K-8)      

 
 

ℜ is the real component.  ℑ is the imaginary component.  * indicates complex conjugate.                                                                              
                                                                               

The correlation lengths are related to the Corcos coefficients by 
 
 

Lx(ω) = Uc/(αxω)                                                                                                (K-9)      
 

Lz(ω) = Uc/(αzω)                                                                                              (K-10)      
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Equations (K-4) through (K-10) are taken from Reference K.2. 
 
Sample Corcos coefficient values for a turbulent boundary layer are given as follows from Reference K.3.  
 
 

Source ax  az 

Willmarth 0.12 0.70 

Efimstov 0.10 0.77 

Robert 0.13 0.83 

Blake 0.12 0.70 

Finnveden 0.116 0.70 

 
 
 
Acoustic Energy-Pressure Relationship 
 
 

Eav Average subsystem acoustical energy 

V Volume 

< p2 > Spatial average of the mean square pressure 

ρ Gas density 

c Gas speed of sound 

 

Eav =  
V

ρc2
< p2 > (K-11) 

 
 
Equation (K-11) is taken from Reference K.4. 
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Appendix L 
 

Homogeneous Panel Response to a Diffuse Sound Field 
 
 
Limp Panel, Non-Resonant Response 
 

〈v2〉 
spatial average mean square 
velocity 

 
m Mass per area 

p Pressure rms  ω Center Frequency (rad/sec) 

 
The spatial mean square velocity 〈v2〉 from Reference L.1 with a correction is 
 

〈v2〉=
2 〈p2〉

m2 ω2
 (L-1) 

 
 

Freely Hung Panel 
 

⟨p2⟩ spatial mean square pressure 
 

ρs 
Surface mass density 
(mass/area) 

cair Speed of sound in air  ω Center frequency (rad/sec) 

(ρc)air Characteristic impedance of air  η Loss factor 

h Panel thickness  σrad Radiation efficiency 

cL Longitudinal wave speed 

 
 
The spatial mean square velocity ⟨v2⟩ from Reference L.2 is 
 

⟨v2⟩ = ⟨p2⟩
√12πcair

2

2(ρc)airhcLρsω
2 {

1

1 + [
ρsωη

2(ρc)airσrad
]
} (L-2) 

 
                                                  

References 
 

L.1 J. Wijker, Random Vibrations in Spacecraft Structure Design, Springer, New York, 2009.  
Equation (4.203) 

L.2 Beranek and Ver, Noise and Vibration Control Engineering Principles and Applications, 
Wiley, New York, 1992.  Equation (9.142) 
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Appendix M 
 

Homogeneous Panel Response to a Point Force 
 
 
Variables 
 

< v2 > mean square velocity  M System mass 

F 
Driving Point Force RMS in 
frequency band 

 
η Dissipation loss factor 

Y Mobility (velocity/force)  ω Center frequency (rad/sec) 

 
 

< v2 >=
F2real{Y}

Mηω
  (M-1) 

 
 
Reference 
 

M.1 R. Lyon & R. DeJong, Theory and Application of Statistical Energy Analysis, Second 
Edition, Lyon Corp, Cambridge, MA, 1998.  Equations (2.4.5, 2.4.8, 8.5.2) 
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Appendix N 
 

Homogeneous Panel Excited by Point Force, Radiation into Acoustic Space 
 
Variables 
 

Πdp Drive point radiation  S Surface Area 

Πrad Resonant modes radiation  c Gas speed of sound 

Π Total acoustic power radiated  ρo Gas mass density (mass/volume) 

Frms Drive point force  s  Panel mass density (mass/area) 

⟨v2⟩ Spatial average of mean square velocity  σ Panel radiation efficiency 

f Center frequency (Hz) 
 

η 
Total panel loss factor  

(dissipation plus radiation) 

fc Panel critical frequency (Hz) 

 
 

Πdp =
ρo Frms

  2

2π c ρs
2  for  f < f c (N-1) 

Πdp = 0     for  f > f c (N-2) 

Πdp =
ρo fc Frms

  2  σ

8 c f ρs
2 η

 for a free field (N-3) 

Πrad = ρocS ⟨v
2⟩ σ    for a reverberant room (N-4) 

Π = Πdp + Πrad  (N-5) 

 
 

The previous power equations are taken from Reference N.1. Note that the radiation efficiency depends 
on whether the panel is baffled or freely suspended, but the power formulas are otherwise the same for 
each case. 
 
 
Reference 
 

N.1 M. Norton & D. Karczub, Fundamentals of Noise and Vibration Analysis for Engineers, 
Second Edition Cambridge University Press, 2003.   Equations (3.56) & (6.78) 
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Appendix O 
 

Baffled Homogeneous or Honeycomb Sandwich Panel  
Response to Diffuse Acoustic Pressure Field 

 
 
Variables 
 

Es 
Total time-average energy of 
structural vibration in the 
bandwidth 

 
ns(ω) 

Modal density of the structure 
(modes/(rad/sec)) 

⟨p0
 2⟩ 

Mean square acoustic pressure in 
the bandwidth 

 
ω Band center frequency (rad/sec) 

⟨vs
 2⟩ 

Mean square velocity in the 
structure 

 
Rrad 

Resistance due to acoustic radiation, 
per equation (C-28) 

c Speed of sound in gas 
 

Rint 
Resistance due to dissipation effects 
other than acoustic radiation 

ρo Gas density (mass/volume) 
 ηint Loss factor due to dissipation effects 

other than acoustic radiation 

M Total panel mass 

 
 

Es = {
2π2c ns(ω)

ρoω
2

⟨ 
Rrad

Rint + Rrad
 ⟩} ⟨p0

 2⟩  (Reference O.1)                          (O-1) 

Rint = M ω ηint (Reference O-2)                           (O-2) 

Es = M⟨vs
 2⟩ (Reference O-2)                           (O-3) 

⟨vs
 2⟩ = {

2π2c ns(ω)

ρoMω
2

⟨ 
Rrad

Rint + Rrad
 ⟩} ⟨p0

 2⟩  
 

(O-4) 

 
 

 
References 
 

O.1 F. Fahy & P. Gardonio, Sound and Structural Vibration, Radiation, Transmission and 
Response, Second Edition, Academic Press, New York, 2007.  See equation (6.37) 

O.2 J. Wijker, Random Vibrations in Spacecraft Structure Design, Springer, New York, 
2009.  See equations (4.112) & (4.133) 
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Appendix P 
 

Transmission Loss 
 
 
Variables 
 

RN Transmission Loss Normal-incidence 

Rrandom Transmission Loss Random-incidence 

 Frequency (rad/sec)        

f Frequency (Hz) 

fcr Critical frequency (Hz) 

s Panel mass per area 

oco 
Characteristic impedance of the gas, assume the same on both 
sides 

 
 
 
Transmission Loss for a Panel via the Mass Law 
 

Transmission Loss Normal-incidence RN 
 

RN ≈ 10 log [1 + (
ρsω

2ρoco
)
2

]     dB Valid for   f  <<  fcr (P-1) 

 
 

Transmission Loss Field-incidence   Rfield 

 

Rfield ≈ RN − 5 dB (P-2) 

 

Field-incidence approximates a diffuse incident field with a limiting angle of about 78.   
 
Transmission Loss Random-incidence Rrandom 
 

Rrandom ≈ RN − 10 log(0.23RN)   dB (P-3) 

 
 

Random incidence covers 0 to 90.  
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Transmission Loss through Composite Panel 
 
Consider a panel with two surface area sections.  Each transmission loss is in terms of dB. 
 

S1 
Section area with the highest 
transmission loss 

 
TL1 

Transmission loss for section with 
highest loss  

S2 
Section area with the lowest 
transmission loss 

 
TL2 

Transmission loss for section with 
lowest loss 

K Area ratio  TLc Composite Transmission loss 

 
 

K =
S2

S1 + S2
 (P-4) 

 
 

TLc = TL1  −   10 log[ 1 − K + K10
(TL1−TL2) 10⁄  ] (P-5)                                                                                              

 
                                                                                                             

                                                                      
 
Transmission Loss through a Payload Fairing to the Interior Acoustic Space 
 
 

f Frequency (Hz)  ηint, ext Coupling loss factor, interior to exterior 

V Volume  ηplf,int Coupling loss factor, fairing to interior 

c Speed of sound, interior  ηplf,ext Coupling loss factor, fairing to exterior 

S Fairing surface area  ηplf,d Dissipation loss factor, fairing 

  
 

α 
Average absorption coefficient, as calculated 
from the area-weighted section absorption 
coefficients for the case of added blankets 

 
 
The transmission coefficient τ is 
 

τ =
8π f V

cS
[ ηint, ext +

ηplf,intηplf,ext

ηplf,d
 ] (P-6)                                                                                              
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The transmission loss TL is 
 

TL(dB) = 10 log (
1

τ
) (P-7) 

 
The noise reduction NR is 
 

NR(dB) = 10 log (1 +
α

τ
) (P-8)           

 
                                                                                    

Transmission Loss across Junction of Two Connected Plates 

The following is taken from Reference P-4. 

 

 

 
Figure P-1. 
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Figure P-2. 
 
R is the same as TL in equation (P-7).    h1 h2⁄  is the thickness ratio. 

The normal transmission coefficient is 

τ(0) =
2Z5

(Z5 + 1)2
,  Z = √

h1
h2

 (P-9) 

                                                                                                   
Sandwich Panel Junction Transmission Coefficient 

Here is an approximate approach based loosely on References P.4 and P.5. 

Select R from Equation P-2.  Convert R to a transmission coefficient τ1 via equation (P-7).  Use this value 

a constant for frequencies up to 500 Hz.   Assume a -3 dB/octave slope for frequencies above 500 Hz. 

τ = τ1 (
f

500
)
−1

 for  f > 500 Hz (P-10) 

 
References 
 

P.1 Beranek and Ver, Noise and Vibration Control Engineering Principles and Applications, Wiley, New 
York, 1992.   Equations (9.80c), (9.99), (9.100) 

P.2 George Diehl, Machinery Acoustics, Wiley-Interscience, New York, 1973. See section (6.3) 

P.3 NASA-HDBK-7005 Dynamic Environmental Criteria, 2001.  Equations (4.36) & (4.41) 

P.4 A. Nilsson & B. Liu, Vibroacoustics, Volume 1, Springer, 2015.  Equation (5.130) 

P.5 S. Hambric, et al, Experimental Vibro-Acoustic Analysis of Honeycomb Sandwich Panels Connected 
by Lap and Sleeve Joints, Inter Noise, Osaka, Japan, 2011. 
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Appendix Q 

 
Noise Reduction 

 
 
 
Noise Reduction into an Enclosure with Transmission Loss and Absorption  
 
 

 
Average absorption coefficient, as calculated from the area-weighted section 
absorption coefficients 

 Transmission coefficient 

 
 
 
The noise reduction NR is 
 

NR(dB) = 10 log (1 +
α

τ
) (Q-1) 

 
The transmission loss TL is 
 

TL(dB) = 10 log (
1

τ
) (Q-2) 

 
 
                                                                                                     

References 
  

Q.1 NASA-HDBK-7005 Dynamic Environmental Criteria, 2001.  Equation (4.36) 

Q.2 
George Diehl, Machinery Acoustics, Wiley-Interscience, New York, 1973.  
Equation (6.1) 
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Appendix R 
 

Acoustic Blankets 
 
 

 

Insertion Loss 

 

The insertion loss should be obtained from test measurements of the blanket.   The following table is 

typical data. 

 
 

Freq 
(Hz) 

Loss 
(dB)  

Freq 
(Hz) 

Loss 
(dB) 

63 2   630 23.1 

80 2   800 25.2 

100 2   1000 27.3 

125 2   1250 28 

160 4   1600 28 

200 6   2000 28 

250 7.7   2500 28 

315 11.9   3150 28 

400 16.1   4000 28 

500 19.6   5000 28 

 

 

Acoustic Absorption Coefficients 

 

The absorption coefficients should be obtained from test measurements of the blanket.  An empirical 

method is given in Reference R.1 for preliminary analysis. The peak absorption coefficient peak for a 

blanket with thickness t (inches) is 

 

αpeak = (t/3) + 0.0005     with an upper limit of  peak =1                                                  (R-1) 

 

Compute the peak frequency fpeak and round to the nearest one-third octave band center frequency, 

 

log(fpeak) = −0.201t + 3.302                                                                                               (R-2) 

 

Construct the curve for frequencies f. 
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f < fpeak   using     =  peak  ( f / fpeak)                                                                                     (R-3) 

 

 

f > fpeak   using     =  peak  (fpeak / f)                                                                                       (R-4) 

 

 

Transmission Coefficient 

 

The average transmission coefficient ave for a fairing lined with blankets is     

τave =
8π f V

cS
[ηint, ext +

ηplf,int ηplf,ext

ηplf,d
[(1 − B) + Bτblanket]] 

(R-5) 

                                         

where 


blanket

 Blanket transmission coefficient from insertion loss 

B Ratio of surface area covered by blankets 

c Speed of sound inside the fairing 

S Surface area 

V  Volume 

f Frequency 

ηint, ext Coupling loss factor, interior to exterior 

ηplf,int Coupling loss factor, fairing to interior 

ηplf,ext Coupling loss factor, fairing to exterior 

ηplf,d Dissipation loss factor, fairing 

 

Equation (R-5) is taken from Reference R-2. 

The relationship between the insertion loss IL(dB) and the blanket transmission coefficient is 

IL(dB) = 10 log (
1

τblanket
) (R-6) 
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References 
 
R.1 K. Weissman, M. McNelis, W. Pordan, Implementation of Acoustic Blankets in Energy 

Analysis Methods with Application to the Atlas Payload Fairing, Journal of the IES, July, 

1994. 

R.2 NASA-HDBK-7005, Dynamic Environmental Criteria, 2001.   See equations (4-33) & (4-41)  
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APPENDIX S 
 

Statistical Response Concentration 
 
 

Velocity Response Amplification 
 
The average response variables given in previous sections apply to spatial averages over the “interior” of 
a subsystem.  Within 1/4 of a wavelength of a boundary, however, the response is biased from the 
average.  
 
 

Pure Tone: 
 
       

Vmax
2

Vrms
2 = Nψmax

2   ,    N =
π

2
 f ηnet  δf̅̅ ̅⁄  

 

         ψmax
2 = 2D 

 

Broadband: 
 
       

Vmax
2

Vrms
2 = 1 + (

π ηnet f

2 δf̅
ψmax
2 − 1)

π ηnet f

2Δf
 

 

 

f Band center frequency  η Net loss factor 

Δf Bandwidth  D Subsystem Dimension:  1, 2 or 3   

δf 
Average modal frequency 
separation (modal density inverse) 

 
  

 
 
 
Reference 
 
S.1 R. Lyon & R. DeJong, Theory and Application of Statistical Energy Analysis, Second Edition, 

Lyon Corp, Cambridge, MA, 1998.  See equation (13.3.2) 
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APPENDIX T 
 
 

Turbulent Boundary Layer Convection Velocity 

 

 

The convection velocity Uc is the velocity at which the fluctuating pressure field propagates beneath a 

turbulent boundary layer. It is usually expressed as a fraction of the free-stream velocity U∞.  

Uc Convection velocity  ω Frequency (rad/sec) 

U∞ Free-stream velocity  δ∗ Displacement thickness 

 

 

Relationship Reference 

Uc ≈  0.75U∞ T.1 

Uc
U∞ 

=  0.6 +  0.4 exp (
−2.2 ω δ∗

U∞
) T.2 

 

 

The convection velocity may vary with frequency and flow per Reference T.3.  This is shown in Figure T-

1, which compares the convection velocities as a function of frequency as reported by different 

researchers. The Bies and Lowson models refer to attached boundary layers, whereas Cockburn and 

Robertson (C&R) refer to separated flow. 
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Figure T-1.  Convection velocity vs. Frequency for a Typical Launch Vehicle Application 
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