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Introduction 

 

Avionics components in launch vehicles must withstand pyrotechnic shock from various sources, 

particularly stage separation.  These components must be subjected to shock testing in the lab to 

verify design integrity prior to flight.1 

 

The shock test method typically uses mechanical excitation or an actual pyrotechnic device such 

as detonation cord. 

 

Structural Excitation 

 

Note that there are four common methods for structural excitation: 

 

1.  Applied force 

2.  Base Excitation 

3.  Flutter or self-excitation 

4.  Initial velocity or displacement 

 

Applied force test examples include using a hammer or a pneumatic device to excite a beam or 

plate.  The use of pyrotechnic charges is also in this group. 

 

Base excitation examples include shaker shock.  Another is a drop tower configured to apply a 

half-sine pulse of specified amplitude and duration. 

 

Flutter and self-excitation are not applicable to shock testing. 

 

The fourth category of initial velocity or displacement2 represents a potential method that has 

apparently not been utilized for previous component testing. 

 
1  The qualification unit itself is not flown, except in the dubious case of proto-qualification units. 
 
2 As an aside, initial displacement excitation has been used for civil engineering structures.  For 

example, a load cell may be used to apply a static force to a bridge, causing an initial displacement.  
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Initial Velocity Excitation of Beam’s Longitudinal Modes 

 

The following example is taken from Reference 1, pages 372-373. 

 

A bar moving along the x axis with constant velocity v is suddenly stopped at the 

end x = 0, so that the initial conditions are  0t)u( =  = 0 and  0t)u( =  = v.  Determine 

the ensuing vibrations. 

 

The example effectively assumes that beam’s boundary conditions are free-free prior to the 

stopping event.  The boundary conditions then immediately become fixed-free at the onset of the 

stop. 

 

The resulting displacement u(x, t) for a fix-free beam per References 1 and 2 is 
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where 

L is the length 

c is the longitudinal wave speed 

n   is the natural frequency of mode n 

 

The displacement initial condition yields nB = 0. 
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The load is then suddenly released.  The resulting free vibration is then measured to determine 

modal characteristics. 
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The velocity is thus 
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The velocity initial condition is found via the following steps. 
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Integrate  
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Orthogonality requires that m=n. 
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The displacement is thus 
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The corresponding acceleration is 
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Now consider only the acceleration at x=L. 
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Damping has been previously neglected.  Assume light-damping.  With some relaxation of 

mathematical rigor, the acceleration at x = L becomes 
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where   is the damping ratio. 

 

 

 

Example 

 

A steel beam (or rod, bar, pipe) has a length of 50 inches.   

 

The speed of sound in steel is approximately c = 200,000 in/sec. 

 

Now consider that the beam is initially at rest.  It then undergoes a free-fall of 18 inches.   It is then 

stopped abruptly by a rigid floor, whereupon it becomes a fixed-free beam. 

 

Also assume 5% damping for each mode. 

 

The first three natural frequencies are 

 

Hz10001f =     

 

Hz30003f =   

 

Hz50005f =   
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Figure 1. 

 

 

The resulting acceleration time history is shown in Figure 1 as calculated per equation (17).    

 

Note that this is an idealization.  Practical limitations are discussed later. 
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Figure 2. 

 

 

 

The resulting SRS is shown in Figure 2.   

 

Larger drop heights would yield higher levels, assuming linearity.  The acceleration level is 

proportional to the square root of the drop height for a given natural frequency. 
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Sanity Check 

 

Consider a single-degree-of-freedom system dropped from rest.  The maximum acceleration from 

Reference 3 in the time domain is 

 

 

Max Accel = hg2n                                                                                            (7) 

 

 

Now model the fixed-free beam as a single-degree-of-freedom system. 

 

 

Max Accel = )inch18)(2sec^/in386(2sec)/rad)2(1000(                                            (8)                                   

 

 

Max Accel = 1919 G                                                                                                          (8) 

 

 

 

The peak absolute acceleration for the beam in Figure 1 is 8385 G in the time domain.  This value 

is higher because it is the response of several modes and because continuous systems have a gain 

factor. 
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Design Concept 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 

 

 

The steel pipe is “tuned” to the knee frequency of the SRS specification.  The mass of the adapter 

and avionics component must be considered in this calculation. 

 

Furthermore, a mechanism is needed at the base to prevent rebound.  This could be some sort of 

latching mechanism or even an electromagnet. 

 

A mechanism would also be needed to raise the pipe to the desired initial height. 

 

The pipe could potentially be replaced by other cross-sectional shapes. 

 

This method should provide good repeatability.  Also, it is one of the few shock test method that 

can be analyzed mathematically, at least through simple calculations. 

 

 

Steel Pipe 

Avionics Box 

Box-shaped Adapter 

Steel Base Plate 

Guide Rod 

Bearing Sleeve 

Free Fall 
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Practical Concerns 

 

Here are some concerns: 

 

1. The floor or base is not perfectly rigid. 
 

2. The guides may reduce the actual initial velocity. 
 

3. Some of the energy is converted into bending modes. 
 

4. Plastic deformation may occur. 

 

 

Rebound is another concern. 

 

 

Concept Test 

 

The basic concept can easily be verified.  This can be done by mounting a shock accelerometer on 

the top end of a rod.  The test technician could then hold the rod, vertically, in one hand, a few 

inches above the ground.  He would then let the rod slide through his hand, catching after it 

impacted the ground.  The measured data could then be compared to theory. 

 

 

 

References 

 

1. Weaver, Timoshenko, and Young; Vibration Problems in Engineering, Wiley-Interscience, 

New York, 1990. 

2. T. Irvine, Longitudinal Natural Frequencies of Rods, Rev D, Vibrationdata, 2010. 

3. T. Irvine, Simple Drop Shock Rev D, Vibrationdata 2004. 

 



 11 

APPENDIX A 

 

 

Internal Force and Normal Stress 

 

Again, the displacement is 
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The velocity is 
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The velocity magnitude for mode 1 is 
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The maximum modal velocity for mode 1 is 
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The normal stress   is 

 

                   

σ = E
∂

∂x
u(x, t) =  

8EvL

π2c2
  ∑ {

ωn

n2
cos (

ωnx

c
) sin( ωnt)}

∞

n=1,3,5,…

 (A-10) 

 

                                      

 

σ =  
8EvL

π2c2
  ∑ {

1

n2
nπ

c

2L
cos (

ωnx

c
) sin( ωnt)}

∞

n=1,3,5,…

 (A-11) 

 

 

 

σ =  
8EvL

π2c2
π

c

2L
  ∑ {

1

n
cos (

ωnx

c
) sin( ωnt)}

∞

n=1,3,5,…

 (A-12) 

 

            

σ =  
4 E v

πc
  ∑ {

1

n
cos (

ωnx

c
) sin( ωnt)}

∞

n=1,3,5,…

 (A-13) 

 

 



 13 

The stress magnitude for mode 1 is 
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The maximum modal stress for mode 1 is 
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The axial force P is 
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