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VIBRATION OF A PLANE TRUSS    Revision B 
 
By Tom Irvine 
Email:  tomirvine@aol.com 
 
January 9, 2009 
 
 
 
A truss is a structure which undergoes translation at its joints.  The truss members are assumed to 
undergo no bending.  This model is an idealization. 
 
Each truss members is effectively assumed to undergo displacement in its respective longitudinal 
axis. 
 
Consider an individual member. 
 
 
 
 
 
 
 
 
 

 
 E   is the modulus of elasticity 
 A   is the cross-section area 
     is the mass per volume 
 
 
The one-dimensional element stiffness jK and mass jM matrices for element j are obtained 

from Reference 1. 
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Form two-dimensional matrices using the displacement vector: 
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The corresponding two-dimensional matrices are  
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Now consider the case where a coordinate transformation must be made to align a given element 
with one of the orthogonal axes.  The following method is taken from Reference 2. 
 
The rotational sub-matrix R is 
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where   is the angle from the global X-axis to the local X-axis. 
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The full transformation matrix for the two-dimensional problem is 
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The element stiffness matrix is transformed to a global stiffness matrix KG as follows 
 
 

RjKTRj,GK                                                                                             (9) 

 
 
The elemental mass matrix is transformed in a similar manner. 
 
 

RjMTRj,GM                                                                                           (10) 

                                                                           
 
The transformed matrices are then assembled into final system matrices which contain all of the 
degrees-of-freedom.  The natural frequencies are found by solving the corresponding generalized 
eigenvalue problem. 
 
An example is given in Appendix A. 
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APPENDIX A 

 
Example 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
EL indicates the element.  N is the node. 
 
Furthermore, the cross-sectional areas are: 
 

EL1 0.8 A 

EL2 1.0 A 
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Element 1 Displacement Vector 
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(A-1) 
 
The unconstrained system mass matrix is  
 
MG =   AL * 
 
    1.2800         0    0.6400         0         0         0 
         0    1.2800         0    0.6400         0         0 
    0.6400         0    3.2800         0    1.0000         0 
         0    0.6400         0    3.2800         0    1.0000 
         0         0    1.0000         0    2.0000         0 
         0         0         0    1.0000         0    2.0000 
 

(A-2) 
 
 
The unconstrained system stiffness matrix is  
 
KG = (EA/L)* 
 
    0.0000    0.0000   -0.0000   -0.0000         0         0 
    0.0000    1.0000   -0.0000   -1.0000         0         0 
   -0.0000   -0.0000    0.3600   -0.4800   -0.3600    0.4800 
   -0.0000   -1.0000   -0.4800    1.6400    0.4800   -0.6400 
         0         0   -0.3600    0.4800    0.3600   -0.4800 
         0         0    0.4800   -0.6400   -0.4800    0.6400 
 

(A-3) 
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No displacement is allowed in either axis at nodes 1 and 3. 
 
The generalized eigenvalue problem becomes. 
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The eigenvalues are 
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Each natural frequency is the square root of the respective eigenvalue.  
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The eigenvectors are 
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The above eigenvectors are normalized with respect to the mass matrix. 
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APPENDIX B 

 
Example 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
EL indicates the element.  N is the node. 
 
Furthermore, the cross-sectional areas are: 
 

EL1 1.0 A 

EL2 0.6 A 

EL3 0.8A 
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Element 1 Displacement Vector 
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The unconstrained system mass matrix is  
 
MG =   AL * 
 
    0.4533         0    0.1667         0    0.0600         0 
         0    0.4533         0    0.1667         0    0.0600 
    0.1667         0    0.5467         0    0.1067         0 
         0    0.1667         0    0.5467         0    0.1067 
    0.0600         0    0.1067         0    0.3333         0 
         0    0.0600         0    0.1067         0    0.3333 

(B-2) 
 
 
The unconstrained system stiffness matrix is  
 
KG = (EA/L)* 
 
    1.3600    0.4800   -0.3600   -0.4800   -1.0000         0 
    0.4800    0.6400   -0.4800   -0.6400         0         0 
   -0.3600   -0.4800    0.3600    0.4800   -0.0000    0.0000 
   -0.4800   -0.6400    0.4800    1.6400    0.0000   -1.0000 
   -1.0000         0   -0.0000    0.0000    1.0000   -0.0000 
         0         0    0.0000   -1.0000   -0.0000    1.0000 
   

(B-3) 
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Only the x-axis displacement is allowed at node 1. 
 
No displacement is allowed in either axis at node 3. 
 
The generalized eigenvalue problem becomes. 
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The eigenvalues are 
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Each natural frequency is the square root of the respective eigenvalue.  
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(B-6) 
The eigenvectors are 
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The above eigenvectors are normalized with respect to the mass matrix. 
 
 


